
A Lightweight Platform
Implementation for Internet of Things

Young Ju Heo, Sung Min Oh, Won Sang Chin, Ju Wook Jang
Department of Electronic Engineering

Sogang University
Seoul, South Korea

{protoheo, dangkuk, mokey82, jjang}@sogang.ac.kr

Abstract— As the number of IoT devices explodes, we
observe numerous IoT platforms which enables us to build
applications, manage, and integrate things connected to the
Internet. We identify key technologies embedded in contemporary
IoT platforms as follows: virtualization, restful API, database for
history, visualization, and mashup. Most IoT platforms are
heavy-weight in terms of software or hardware and often require
proprietary protocols. In this paper, we introduce a lightweight
implementation of IoT platform which can be easily built from
off-the-shelf components and windows OS, still realizing all the
above key technologies as found in most heavy-weight IoT
platforms. In addition, we make our IoT platform smart by
adding context-awareness.

Keywords— Internet of things; Node. js; lightweight;
visualization; virtualization; Context

I. INTRODUCTION
Iot platforms virtualize devices connected to the Internet

and provide a growing number of services that can be shared
among various IoT applications. Features may differ
depending on various platforms most of them share a few
key technologies or features: virtualization, restful API,
database for history, visualization, and mashup. It is our
observation that IoT platforms should include context-
awareness to be more smart, involving as little human
intervention as possible.

The virtualization of real world objects in the framework
is realized through the creation of virtual objects which are
semantically enriched with context related information.
Additionally, virtual objects of different types can be
combined in a more sophisticated way by forming composite
virtual objects, which provide services to high-level
applications and end-users.[1]

Restful API is a software architecture style consisting of
guidelines for creating scalable web services. REST is a
coordinated set of constraints applied to the design of
components in a distributed hypermedia system that can lead
to a more performant and maintainable architecture.[2]
Xively, Thingworx and Axeda use RESTful API.

Platforms which are using RESTful API communicate
over the Hypertext Transfer Protocol with the same HTTP
verbs (GET, POST, PUT, DELETE, etc.) used by web
browsers to retrieve web pages. [3]

Database for history: IoT network brings a series of
challenges for data storage and processing. IoT data can be
generated quite rapidly, the volume of data can be huge and
the types of data can be various. So, IoT platforms are
required to be equipped storage system for IoT data.[4] For
example, Thingsquare provides smartphone application of
IoT data's cloud service.

Visualization is technique for creating images, diagrams,
or animations. Visualization is critical for an IoT application
as this allows the interaction of the user with the
environment. For example, Xively provides drawing chart
API.

A mashup used in web development is a web page. It
uses contents from sources to create a sole new service. For
example, combing the addresses and photographs of library
branches with a Google map creates a map mashup.

A system is context-aware if it uses context to provide
relevant information and/or services to the user, where
relevancy depends on the user’s task.[5] For providing
context based service, context reasoning should be executed.
Context reasoning has the following four models; Key-
values model, Logic-based model, Ontology-based model
and Probabilistic Graphical Model. Other platforms don't
consider context, but we implement control algorithms by
using Logic-based model.[6]

In this paper we address our lightweight platform which
has above-mentioned key technologies implementation for
IoT. In chapter 2, we introduce some related works and
chapter 3, how we make the lightweight platforms, lastly
chapter 4 we mentioned conclusion and future works.

II. RELATED WORK

A. Xively
Xively is IoT data service delivery platform. It collects

real-time data from the connected sensors and devices as
well as enable mashup service for the devices. Also it
supports a variety of open-source hardware devices and
provides a RESTful-based open API. Through this API, user
could exploit such as management of connected devices and
drawing a graph of stored data. Moreover Xively supports
identifying registered devices by ID.[7]

2015 3rd International Conference on Future Internet of Things and Cloud

978-1-4673-8103-1/15 $31.00 © 2015 IEEE

DOI 10.1109/FiCloud.2015.29

526

B. Thingsquare
Thingsquare supports open source Contiki OS-based

devices and the cloud server platform. It is possible to access
data in the cloud server through the smart phone application
and monitor the status of the device. Thingsquare also
provides a Web-based development environment to compile
and install the software by online. It also supports the mesh
routing, IPv6 addressing and connection to the cloud server
via the gateway. [8]

C. Thingworx

Thingworx supports various protocol and provides a
search engine for searching collected data and connected
devices. Thingworx are focused on the service using the
integration, modification, representation of the data. In
addition, developers can create applications using the data
from the platform via a user-friendly interface. Thingworx
supports interlocking interface with business systems such as
SAP, Oracle, and Salesforce. And it also supports cloud
services and social services. [9]

D. Axeda
Axeda is IoT cloud service platform based business

domain. It enables application services, integration
framework, and data management. The Axeda platform
provides connectivity between devices and objects. It also
provides data acquisition, storage, device management,
monitoring, provisioning and firmware update. Also message
based data delivery is available when events has occurred
between external service and Axeda platform.[9]

III. DESIGN OF HARDWARE AND SOFTWARE
COMPONENT

Figure 1 shows the lightweight platform of a smart home
sensor network system that we have developed. Open source
hardware, Arduino, executes role of sensor/actuator nodes.
We have run a stand-alone web server through Node.js
without need that additional server like Apache. At this time,
node can communicate with server for transfer data using
WiFi or Ethernet.

TABLE 1. COMPARISON OF IOT PLATFORMS

 Xively Thing
worx

Thing
square Axeda Proposed

Virtualization O O O O O
Restful API O O X O O

Storage O O O O O
Mashup
Service O O X X O

Visualization O O O X O

Context-aware X X X X O

We focus on to design lightweight platform and it takes a
short time. However, our platform has component of all IoT;
Efficient data base, virtualization, visualization and mashup
service. (Figure 2)

A. Sensor & Acturator

First, the temperature & humidity sensor consists of
Arduino Uno R3 combine with DHT11. DHT11 includes a
resistive-type humidity measurement component and a NTC
temperature measurement component, and connects to a high
performance 8-bit microcontroller, offering excellent quality,
fast response, anti-interference ability and cost-effectiveness
[10]. (Table 2)

Arduino that connect with DHT11 continually transfer
data which is temperature and humidity information.
Temperature and humidity are displayed on a serial LED
display.

To control the actuator, we connect LED/DC motor into
Arduino. LEDs perform the role of the illumination and
heater. DC motor perform the role of the fan. User can
activate or deactivate these actuators through the web page.

Also, through the internet, Arduino needs to transfer
sensor data to server or receive request of server. Therefore,
we uses Ethernet/WiFi shield for using Internet.

TABLE 2. DHT11 SPECIFICATIONS

Figure 2. Feather of our IoT platform

Measurement
Range

Humidity
Accuracy

Temperature
Accuracy Package

20-90%
0-50 ±5% ±50 4Pin Single

Row

Figure 1. Overall platform architecture

527

B. Server using Node.js & Virtualization

Node.js is a server-side JavaScript environment. It’s based
on Google’s V8 engine. V8 and Node are mostly
implemented in C and C++, focusing on performance and
low memory consumption.[11] Also, many libraries enable
to easily run server. The example in Figure 3 shows how
easily developers can build a simple asynchronous, event-
driven network server. Through a web page, user can check
status of sensor and actuator and virtualize them.

In a web page, virtualized sensor and actuator are
displayed as an icon. Through a web page, user can
activate/deactivate devices, but also it is possible to integrate
them and increase manageability.[12] We have implemented
a context-based control through virtualization (Chapter 3-F).

When a node transfers sensor data to server, server stores
the data in a database, MongoDB. Explanation of a database
is mentioned in next the chapter 3-C.

C. Database-MongoDB
MongoDB is a cross-platform document-oriented

database. Classified as a NoSQL database, MongoDB is
different from the traditional table-based relational database
structure in favor of JSON-like documents with dynamic
schemas, making the integration of data in certain types of
applications easier and faster[13].

For this reason, we used MongoDB as a database for
store data. When actuator/sensor nodes transfer their data
(status, temperature and humidity), server store the data with
timestamp. (Figure 4)

MongoDB services Node.js API documents so that
developers easily use the database with the help of modified
CRUD (Create, Read, Update, and Delete). For easily edit or
view data, we chose Robomongo program. Figure 5 shows
that device, status and date in the database using
Robomongo.

Figure 5. View database using Robomonogo

D. JSON data parsing
Parsing is the process of analyzing a string of symbols, in

computer languages, conforming to the rules of a formal
grammar.[14] To get the information which is outdoor
temperature, we use external API, OpenWeatherMap.
(Figure 7) The example in Figure x4 shows weather
information (Temperature, weather, etc.) in Seoul, Korea.
The weather information is JSON type. Using function
JSONstream module, we can parse the JSON-type data
(Figure 6).

Figure 3. Running a simple HTTP server

var MongoClient =
require('mongodb').MongoClient;
var mongoclient = new MongoClient(new
Server('localhost',27017,{'native_parser':true}));

mongoclient.open(function(err, mongoclient) {
 http.createServer(app).listen(app.get('port'
), function(){
 console.log(Node.js Server
listening on port ' + app.get('port'));
 });
});

var db = mongoclient.db(‘db01');

app.post('/insert',function(req,res){
 var body = req.body;
 db.collection('wind01').insert({device:body.
name, status:body.status }, function(err,doc){

res.redirect('/');
});

});

Figure 4. Insert data into MongoDB

528

E. Sending data using RESTful API – GET/ POST Method
We can view a web page using REST. If we want to view

a chart of thermometer per hour, GET method is used. When

you access ‘http://192.168.0.42:3000/chart/Thermometer/’,
you can see a thermometer chart.

 Using HTTP POST method, transfer data between
Sensor / Actuator nodes and web server. The POST request
method is designed to request that a web server accepts the
data enclosed in the request message's body for storage.[15]

When a web browser sends a POST request from a web
form element, the default Internet media type is
"application/x-www-form-urlencoded".[16] This is a format
for encoding key-value pairs with possibly duplicate keys.
Figure 8 and Figure 9 show header of POST request.

F. Visualization
To implement visualization, we use Google Chart API.

Google Charts provides a way to visualize data on a website.
We can load some Google Chart libraries, list the data to be
charted, select options to customize the chart. Also, we put
the NoSQL data into the chart, so that history of database is
displayed as a chart.

function PostCode(status) {
 var post_data = querystring.stringify({
 'LED' : status
 });
 var post_options = {
 host: '192.168.0.11',
 port: '3020',
 path: '/',
 method: 'POST',
 headers: {

'Content-Type':
'application/x-
www-form-
urlencoded',
'Content-Length':
post_data.length

 }
 };
 var post_req = http.request(post_options,
function(res) {
 res.setEncoding('utf8');
 res.on('data', function (chunk) {

console.log('Resp
onse: ' + chunk);

 });
 });
 post_req.write(post_data+'\n');
 post_req.end();
}

var request = require('request')
, JSONStream = require('JSONStream')
, es = require('event-stream');

request({url:'http://api.openweathermap.org/dat
a/2.5/weather?q=seoul,kr'})
.pipe(JSONStream.parse('main.temp'))
.pipe(es.mapSync(function (data){
console.log("temp:"+data);
}));

{
"coord":{

"lon":126.98,"lat":37.57
},

"sys":{
"message":0.026,
"country":"KR",
"sunrise":1430944210,
"sunset":1430994427
},

"weather":[{
"id":803,
"main":"Clouds",
"description":"broken clouds",
"icon":"04d"
}],

"base":"stations",
"main":{

"temp":289.341,
"temp_min":289.341,
"temp_max":289.341,
"pressure":1000.9,
"sea_level":1024.13,
"grnd_level":1000.9,
"humidity":36
},

"wind":{
"speed":3.66,
"deg":249.002
},

"clouds":{"all":76},
"dt":1430991290,
"name":"Seoul",
}

Figure 6. Weather API in OpenWeatherMap

Figure 7. JSON data parsing

Figure 8. POST header on Node.js

529

G. Context-based control
Figure 9 shows an illustrative scenario of our context-

based virtualization. In this example, the heater operates in
three situations. In the first case, if the external temperature
is less than 10 degrees and is the room temperature is less
than 15 degrees than operates the heater. And if the room
temperature is less than 15 degrees, then determine that the
room temperature is not comfortable to the user, operates the
heater. And, the user set the heater is switched ON, then
heater will be operated regardless of any other conditions.

IV. EXPERIMENTAL RESULTS
We have developed a lightweight IoT platform and have

tested sensor node and actuator. User can activate actuator.
When user touch a virtualized actuator icon, then web server
send POST data (key-value). For example, when user touch a
bulb icon, server send LED-ON (or OFF) message. (Figure
10, 11)

There are history of sensor data (temperature and
humidity) and in the database. User can access history or get
the mean value of history. Also, History serves chart using
Google Chart API (Figure 12).

Figure 9. Context-based AND-OR tree

Figure 10. Index page of IoT platform

Figure 12. Chart using Google Chart API

In chapter III-F, we mentioned about context-based

control. Figure 13 shows activation of context-based control.
When three condition (outdoor temperature 9.56°C (under
10°C), indoor temperature 15(under 15°C) and context-
based control ON) are satisfied, heater automatically
activate.

V. CONCLUSION
In this paper, we have presented lightweight IoT platform

developed by node.js. This platform has scalability for
various sensors and actuators. The platform also supports
virtualization, visualization and Restful API. In addition,
without using the dedicated application, it can be used by
only simple connection through web browsers. And it can be
easily built and operated even in low-end hardware.

 Figure 11. Virtualized LED icon

Figure 13. Context-based control result

530

As future work, the platform, in this paper, can be
expanded in a number of different aspects. For example,
various protocols such as Bluetooth Low Energy and IEEE
802.15.4 can be used. Also, not only ipv4 but also
lightweight IPv6 addressing scheme such as 6LoWPAN can
be considered for addressing. And for low power
consumption, low-energy communication protocol such as
COAP and MQTT also should be considered.

ACKNOWLEDGMENT
This Work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded
by the Korea government(MSIP) (No. B0126-15-1051, A
Study on Hyper Connected Self-Organizing Network
Infrastructure Technologies for IoT Service).

REFERENCES
[1] Kelaidonis, Dimitris, "Virtualization and cognitive management of

real world objects in the internet of things.", 2012 IEEE International
Conference on, 2012.

[2] RT Fielding, RN Taylor, " Principled design of the modern Web
architecture", ACM Transactions on Internet Technology, 2002.

[3] L Richardson, S Ruby, “RESTful web services”, O’REILLY, 2008,
pp. 17.

[4] Lihong Jiang, Li Da Xu, Hongming Cai, Zuhai Jiang, Fenglin Bu,
and Boyi Xu, "An IoT oriented data storage framework in cloud
computing platform," IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, VOL. 10, NO. 2, pp.1443-1451, MAY 2014.

[5] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P.
Steggles, “Towards a better understanding of context and context-
awareness,” in Proceedings of the 1st international symposium on

Handheld and Ubiquitous Computing, ser. HUC ’99. London, UK:
Springer-Verlag, 1999, pp. 304–307. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647985.743843

[6] G. Nalepa and S. Bobek, “Rule-based solution for context-aware
reasoning on mobile devices,” Computer Science and Information
Systems, vol. 11, no. 1, pp. 171.193, 2014.

[7] Köhler, Marcus, Dominic Wörner, and Felix Wortmann, "Platforms
for the Internet of Things–An Analysis of Existing Solutions,"
(Forthcoming).

[8] Mazhelis, Oleksiy, and Pasi Tyrvainen, "A framework for evaluating
Internet-of-Things platforms: Application provider viewpoint,"
Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE,
2014.

[9] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “Contemporary
Internet-of-Things platforms” http://arxiv.org/abs/1501.07438, Jan
2015, technical report.

[10] D-Robotics UK, "DHT11 Humidity & Temperature Sensor", DHT11
datasheet, July. 2010.

[11] S Tilkov, S Vinoski, “Node. js: Using JavaScript to build high-
performance network programs” IEEE Internet Computing, 2010.

[12] Md. Motaharul Islam, Mohammad Mehedi Hassan, Ga-Won Lee and
Eui-Nam Huh, "A Survey on Virtualization of Wireless Sensor
Networks", Sensors, vol. 12, pp.2175-2207, Feb. 2012.

[13] P Membrey, E Plugge, D Hawkins, “The definitive guide to
MongoDB: the noSQL database for cloud and desktop computing”,
Apress, 2010, pp. 25.

[14] parse. (n.d.). Collins English Dictionary - Complete & Unabridged
10th Edition, 2015, Available: American Psychological Association
online, http://dictionary.reference.com

[15] Berners-Lee, Tim; Connolly, Dan, "Hypertext Markup Language - 2.0
- Forms", 1995

[16] R. Fielding, J. Reschke, "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content", 2014

531

